
Week 10:
Transformation of stresses 
and strains part 2

1. Mohr’s circle of stress
2. Principal stresses in 3D
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Mohr’s circle of strain in 2D 2
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Plane stress Plane strain

max normal

max shear

Angle max 
normal

Angle max 
shear

Transformation of plane stress & strain in 2D 3
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Principle stresses in 3D 4

§ The stress tensor is a symmetric  3x3 tensor that can be written in different 
coordinate systems. 

§ From linear algebra we know that one coordinate system exists in which the tensor 
only has non-zero elements in its diagonal (everywhere else the components are 
zero).

§ The axes of this coordinate system are the principal axes
§ The elements in the diagonal are the principal stresses
§ When the stress tensor is represented in its principal coordinate system, there are 

no shear stresses, only normal stresses
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Principle stresses in 3D 5

§ Calculating the principal stresses equal finding the eigenvalues and eigenvectors 
of the stress tensor:

§ When we know the 3D stress state in our reference coordinate system, we can 
calculate the principal stresses by calculating the roots of the characteristic 
equation:

§ With I1, I2, I3:

§ I1, I2, I3 are the stress invariants.  

Calculating the principal stresses
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Principle stresses in 3D 6

§ The stress invariants in the principal axes are then:

§ With the eigenvalues of the 3D stress tensor we can then calculate the 
Eigenvectors. The Eigenvectors point in the direction of the principal axes of 
the stress state.

I1 = �1 + �2 + �3

I2 = �1�2 + �1�3 + �2�3

I3 = �1�2�3



Mohr’s circle in 3D

§ The stress tensor is dependent only on 
the stress state, and not on our initial 
choice of coordinate system. 

§ We’ve previously learned to draw the 
Mohr’s circle in 2D. Those were in 
essence projection of the 3D stress state 
in 2D

§ To get to Mohr’s circle in 3D, we can 
therefore draw three individual Mohr’s 
circles for the planes x-y, x-z, and y-z, as 
long as we know the principal stresses

7



Mohr’s circle in 3D-
Maximum shear stress

We can use Mohr’s circle in 3D to 
evaluate what the maximum shear 
stresses are in the 3 principal 
directions

8

⌧max,3 = ±�1 � �2

2

⌧max,2 = ±�1 � �3

2
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2
Comment: Sometimes we use the opposite numbering convention σ3<σ2<σ1



Mohr’s circle in 3D - 3D state of plane stress 9

§ 3D state of plane stress – 2 positive stresses:

§ 3D state of plane stress – 1 positive stress, 1 negative:



Example: Triaxial stress 
state – NOT plane stress

Calculate the maximum principal 
stresses and maximum shear 
stresses for the stress state on the 
left.

Solution:
Calculate stress invariants
Calculate roots of characteristic 
equation (through a plot)
Extract the maximum shear and 
principal stresses

10
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Example: Triaxial stress 
state – NOT plane stress
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Example: Triaxial stress 
state – NOT plane stress
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Failure criteria

13



What is Failure?

Failure – any change in a machine part 
which makes it unable to perform its 
intended function.(From Spotts M. F. 
and Shoup T. E.) 
We will normally use a yield failure 
criteria for ductile materials. The 
ductile failure theories presented are 
based on yield.
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§ Static failure
• Ductile
• Brittle
• Stress concentration

§ Recall
• Ductile

§ Significant plastic deformation 
between yield and fracture

• Brittle
§ Yield ~= fracture

Failure Theories
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Failure of brittle 
materials

16

§ A brittle material subjected to uniaxial tension fails without necking, on a plane 
normal to the material’s long axis 

§ Under uniaxial tensile stress, the normal stress that causes it to fail is the 
ultimate tensile strength of the material 

§ If the material is under three-dimensional stress state, it is useful to determine 
the principal stresses at any given point and to use one of the failure criteria 



Failure of brittle materials
Maximum normal stress criterion

17

§ A given structural element fails when 
the maximum normal stress in that 
component reaches the material’s 
ultimate tensile strength.

§ This criterion should only be applied 
to brittle materials

§ It implies that the mechanism of 
failure is separation

§ In the case of plane stress, we can 
draw the maximum normal stress 
criterion graphically.  Any state of 
stress within the shaded area is safe

Max (|�1|,�2|, |�3|) = �U



Yield Criteria for Ductile 
Materials 

§ a ductile material subjected to uniaxial 
tension yields and fails by slippage along 
oblique surfaces and is due primarily to 
shear stresses 

§ Ductile materials fail not through fracture, 
but through deformation.

§ plastic deformation initiated at the yield 
strength takes place through shear 
deformation, it is natural to expect failure 
criteria to be expressed in terms of shear 
stress  

§ We therefore cast failure criteria in terms 
of yield:

Von Mises criterion (distortion energy criterion)

18



Von Mises Criterion 19

§ This criterion for failure of ductile materials is derived from strain energy 
considerations and states that yielding occurs when: 

§ To make determining the stress state for failure analysis simpler, we can 
calculate an equivalent Von Mises stress for each point in the structure.

To determine whether a structural component will be safe under a given load, we 
should calculate the stress state at all critical points of the component and 
particularly at all points where stress concentrations are likely to occur. 



Safety factor 20

§ We can describe how close a material in a structure is to its failure point using 
the safety factor.

§ The safety factor compares the respective yield strength to the respective 
maximum or equivalent stress

§ For the Von Mises safety factor we get:

§ sometimes the safety factor is also written as (e for equivalent):
⌘e =

�Y

�e

SM = ⌘M =
�Y

�M



Beams

• Loads and supports
• Shear in beams
• Bending moment in beams
• Shear and moment diagrams
• Integration method for shear forces  

and bending moment
• Singularity functions

21



Beams 22

§ Beams are structural members that have one dimension much longer than the 
other two 

§ A beam is a structural element that is capable of withstanding loads primarily 
by resisting bending.

§ The bending force induced into the material of the beam as a result of the 
external loads, own weight, span and external reactions to these loads is 
called a bending moment.

§ A beam with a laterally and rotationally fixed support at one end with no 
support at the other end is called a cantilever beam



Beams are fundamental 
design structures

23



Beams 24

§ As with all previous situations, we can calculate the external  reaction forces 
on beams through the equilibrium equations. For typical beam structures we 
get reaction forces and reaction moments at the supports. 

§ Using the method of sections we can relate the external forces and moments 
to internal reactions: internal shear and moments

§ We can then calculate the internal shear and moments for each position of the 
beam and draw the shear and moment diagrams

§ From these diagrams we will then in the next chapter determine how the 
beam deforms

Internal reactions to external loads



Types of supports

Roller or link: capable of resisting force only 
in one specific line of action
Pin: restricting force in any direction of the 
plane, so that the reaction force has two 
components. A pin can not withstand a 
moment in the plane
Fixed support: capable of resisting force in 
any direction as well as moments or couples
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Special beams

A simply supported beam is 
supported on one end with a pin 
support, on the other with a roller 
support.

A cantilever beam is supported on 
one end with a fixed support, and 
free on the other end

26



Types of loads
Concentrated loads: the force acts on a 
concentrated point (this is a simplification, since 
this is not possible in reality)
Evenly distributed loads: The force per unit area is 
constant. In beam problems we often look only in 
2D, so then the force per unit length would be 
constant.
Unevenly distributed load: the force per unit area 
(length) varies. Often the force per unit length is 
given as a force intensity (q(x))
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Types of problems 28

§ Often, we can replace a distributed load by an equivalent point load acting 
through the centroid (center of force) of the distributed load. CAREFULL: this 
is only applicable for certain types or parts of calculations!

§ We can separate beam problems again into statically determinate, and 
statically indeterminate problems. For the statically indeterminate problems 
we will again use constitutive laws and geometric constraints to determine the 
redundants



Method of Sections 
Applied to beams

29

We know from equilibrium:
§ the externally applied loads and the support reactions keep the entire body in 

equilibrium
§ When making imaginary cuts (sections) internal reactions must exist to keep 

the individual sections in equilibrium. The internal reactions can be:
• Axial force (P):

§ a horizontal force may be necessary to keep the beam in equilibrium
§ we can find axial forces by calculating
§ The line of action is always through the centroid of the beams cross-sectional area

X
Fx = 0



Method of Sections 
Applied to beams

30

• Shear force (V):
§ A force parallel to a cut section to balance all vertical forces acting on the section
§ We find the shear forces by solving

§ The two shear forces on two opposing faces of an imaginary cut are equal in 
magnitude and opposite in direction

• CONVENTION: positive shear involves downward V on the left-hand side of the cut 
and upward on the right.

X
Fz = 0

Shear in a beam is positive if the 
segment left of the cutting plane 

tends to move upwards relative to 
the segment to the right of the cutting 

plane



Method of Sections 
Applied to beams

31

• Bending moments: these are internal moments that balance the moments that are 
caused by the external loads
§ the internal moment is developed within the cross-sectional area of the cut and is 

opposite to the resultant external moment
§ these moments tend to bend the beam: hence the name bending moment
§ the bending moment is positive when the bottom fibers are in tension, and the top 

fibers are in compression



Sign convention for shear 
and bending moment

32

The algebraic sign of a stress resultant is determined by 
how it deforms the material on which it acts, NOT by its 

direction in space!

Shear and bending moments are resultants of stresses distributed over 
the cross section. The are also called: stress resultants



Beam Diagrams 33

§ We can represent the three internal reactions in the beam each in their own 
diagram through the length of the beam.

• axial force diagram
• shear force diagram
• bending moment diagram

§ The axial force diagram is not used as often as the other two, although it can 
be very useful in determining the tensile stresses in flexure elements.



Beam Diagrams 34

§ The method of drawing the shear diagram is:
1. Sketch the free body diagram
2. find the reactions
3. draw a V-diagram directly under the FBD
4. find V on “points of interest” by using the method of sections and 

solving for Fz:
5. Draw the V diagram and locate point of zero shear

§ Shear Diagrams

X
Fz = 0

Properties of shear diagrams:

¨ On a section where there is no external load, the shear is constant
¨ At a concentrated load, the shear diagram has a discontinuity
¨ At a uniform distributed load, the shear diagram will be a straight line 

with a slope equal to the load density
¨ For simply supported beams with vertical loads, the positive and 

negative areas contained by the shear diagram are equal



Moment Diagrams 35

§ Drawing moment diagrams
1. Draw M diagrams directly below shear diagrams
2. calculate the moments at “points of interest”

a) calculate the shear areas between key points. Add all the shear 
areas up beginning  at the left

b) use the FBD of individual sections beginning on the left side to 
compute moments at key points and points of zero shear

3. Plot moment values: sketch shape between the plotted points by 
referring to the shear diagram

Properties of moment diagrams
¨ For simple supported, single span beams, the moment at each end 

is zero
¨ for a cantilever beam acted on by a downward force, the bending 

moment is zero at the free end and maximum at the support
¨ bending moment is positive for simply supported beams and 

negative for cantilever beams
¨ except for cantilever beams, maximum bending moment occurs at 

the point of zero shear



Integration method: Shear 
force and bending moment

§ We derive relationships between 
loads, shear forces and bending 
moments.

§ We look at an infinitesimal section of 
the beam in bending. Let the section 
have length=dx

§ A distributed force with intensity q(x) 
acts downward 
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Integration method: 
Shear force and bending moment

37

§ From equilibrium in z:
§ Eqn 1:

§ From equilibrium of moments:
§ Eqn 2:

§ Combined we get:
§ Eqn 3:

dV

dx
= �q(x)

dM

dx
= V

d2M

dx2
= �q(x)



Integration method: 
Shear force and bending moment

38

§ From integrating eqn 1 we get: 

This means:
§ Shear is the sum of all vertical forces acting on the beam starting on the left 

end, up to the point of section, + the shear at the left end of the beam C1

§ Between two sections, the shear changes by the amount of vertical forces
§ If a concentrated force occurs, there is a discontinuity
§ for constant loads: the slope of the shear is the load density q

q = const V = �q · x+ C1

V =

Z
dV =

Z
�q(x)dx+ C1



Integration method: 
Shear force and bending moment

39

§ From integrating eqn 2 we get:

This means:
§ the bending moment between two sections is the area under the V curve 

between the two sections
§ C2 we get from the boundary conditions: 

• If the beam is on rollers or pins, C2=0 
• If the beam is on a fixed support, we can calculate the moment from the reactions

M =

Z
dM =

Z
V (x)dx+ C2



Integration method: 
Shear force and bending moment

40

§ Circle to determine curvature of V and M diagram (going from q to V, or from V 
to M)

PD ND

NI PI

PD: Positive-decreasing
ND: Negative-decreasing
NI: Negative-increasing
PI: Positive-Increasing



Singularity functions

§ To calculate the deflections, moments and 
shear diagrams of complex loading 
scenarios, we need a way to combine the 
loads into one concise formula.

§ Singularity functions give us a way of adding 
common loading types that start acting at 
different distances along the beam.

§ n is a positive or negative integer including 
0. a is the boundary value where the load 
begins.

§ A special case of the singularity function is 
for n=-1. This is the Dirac delta function and 
can be used to represent point loads. 

41

hx� ain =

(
(x� a)n, if a  x

0, x < a



Singularity functions 42

Standard functions n=0,1,2

hx� x0i0 =

(
1 if x � x0

0 if x < x0

hx� x0i2 =

(
(x� a)2 if x � x0

0 if x < x0
hx� x0i1 =

(
x� a if x � x0

0 if x < x0

n=0 n=1 n=2



Standard loading 
schemes

M
E-

23
1B

 / 
ST

R
U

C
TU

R
AL

 M
EC

H
AN

IC
S 

FO
R

 S
V

G
eo

rg
 F

an
tn

er
 

43



Integration of 
Singularity functions 

44

§ The exponent in the singularity functions can NOT be treated as a normal 
exponent. It is actually an index!

§ Using the integration of the singularity functions we can now calculate the 
effects that standard loads q(x) have on V and M

for n � 0

Z
hx� aindx =

1

n+ 1
hx� ain+1

for n < 0

Z
hx� aindx = hx� ain+1



Singularity function 
description of loads

45

x
a

M0

x
a

P

x
a

q0

x
a

slope k

q(x) V (x) M(x)
�M0 hx� ai�1M0 hx� ai�2 �M0 hx� ai0

P hx� ai�1 �P hx� ai0 �P hx� ai1

q0 hx� ai0 �q0 hx� ai1 �q0
2
hx� ai2

k hx� ai1 �k

2
hx� ai2 �k

6
hx� ai3


