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Stress Reduction

Directions:

I. Place on FIRM surface.

2. Follow directions in circle.

3. Repeat step 2 as necessary, or until unconscious.
4. If unconscious, cease stress reduction activity.

o~

Week 10:
Transformation of stresses
and strains part 2

Mohr’s circle of stress
Principal stresses in 3D

=y

Georg Fantner



EPFL . Mohr’s circle of strainin 2D

E,r — &
avaO — T y70
(a0, 0) ( . )




=PFL  Transformation of plane stress & strain in 2D

Summary

Plane stress Plane strain

max normal

max shear

Angle max
normal

Angle max
shear




=F7L " Principle stresses in 3D

= The stress tensor is a symmetric 3x3 tensor that can be written in different
coordinate systems.

= From linear algebra we know that one coordinate system exists in which the tensor
only has non-zero elements in its diagonal (everywhere else the components are
zero).

o T, T, . . Opt Tgply' Tals o 0 O
PR r Y "TZ\ in principal coord. r Y vz 1
T =\ Tyz Oy Tyz — Tyw Oy Ty | =10 o2 0
Tzx Tzy Oz Tyrx!  Tzly Oy 0 0 o3

= The axes of this coordinate system are the principal axes
= The elements in the diagonal are the principal stresses

= WWhen the stress tensor is represented in its principal coordinate system, there are
no shear stresses, only normal stresses



=F7L " Principle stresses in 3D

Calculating the principal stresses

= Calculating the principal stresses equal finding the eigenvalues and eigenvectors
of the stress tensor: R
det (5 - A?) —0

= When we know the 3D stress state in our reference coordinate system, we can
calculate the principal stresses by calculating the roots of the characteristic

equation:
0'3—110'2—|—120'—13:0

= With |1, |2, |3: I

= Ozt oy +o0,

— 2 2 2
I, = Ox0y + 040, + 0yo, — Toy = Toz = Tyz
— 2 2 2

= |4, I I3 are the stress invariants.




=F7L " Principle stresses in 3D

= The stress invariants in the principal axes are then:

Il = O'1+O'Q+O'3
Iy = 0109+ 0103+ 0203
Is = 010203

= With the eigenvalues of the 3D stress tensor we can then calculate the
Eigenvectors. The Eigenvectors point in the direction of the principal axes of
the stress state.



=PrL

Mohr’s circle in 3D

The stress tensor is dependent only on
the stress state, and not on our initial
choice of coordinate system.

We've previously learned to draw the
« (o} > Mohr’s circle in 2D. Those were in
2
essence projection of the 3D stress state

= o) > in 2D
T To get to Mohr’s circle in 3D, we can
therefore draw three individual Mohr’s

circles for the planes x-y, x-z, and y-z, as
long as we know the principal streSses
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T+ T

v'z, “abs max

Mohr’s circle in 3D-
Maximum shear stress

Normal
Stress, o

We can use Mohr’s circle in 3D to
evaluate what the maximum shear
stresses are in the 3 principal

01— 02

Tmaz,3 = T 5 directions
Tmax,2 — :l:o-l ; 73
Tmax,1 — :|:O2 ; 73

Comment: Sometimes we use the opposite numbering convention 0;<0,<0;




=PFL - Mohr’s circle in 3D - 3D state of plane stress

= 3D state of plane stress — 2 positive stresses:

K

negative:




EPFL Example: Triaxial stress
state - NOT plane stress

Calculate the maximum principal
stresses and maximum shear

20 40 —30 ist;tesses for the stress state on the
T =40 30 25 | MPa Sl
—-30 25 -—10

Solution:
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600000

450600

— - st / .
R — Example: Triaxial stress
S T state - NOT plane stress

Va " ezl

/ 500606

/

~800000-
Stress (MPa)

o, =65.3MPa

o, =26.5MPa

o, =—-51.8MPa

T .. =1/2(65.3+51.8)
=58.5MPa



=PrL

Shear (MPa)

Tz Tabs mu.r=5 8.5

02=26.5
0= -51.8._ / 6,=63.5
Normal
Stress, o (MPa)

o, =65.3MPa

o, =26.5MPa

o, =—-51.8MPa

T .. =1/2(65.3+51.8)
=58.5MPa

Example: Triaxial stress
state - NOT plane stress




Failure criteria

13
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Stress

. Strain Hardening ) Necking

Ultimate Strength
N

Fracture

Yield Strength

Rise

Run

Young's Modulus = Rise = Slope
Run

Strain

Whatis Failure?

— any change in a machine part
which makes it unable to perform its
intended function.(From Spotts M. F.
and Shoup T. E.)

We will normally use a

{e]g . The
ductile failure theories presented are
based on yield.

[y
S

Georg Fantner
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Failure Theories

= Static failure
* Ductile
* Brittle
» Stress concentration

= Recall
* Ductile

= Significant plastic deformation
between yield and fracture

* Brittle
» Yield ~= fracture

Failure

[y
o

Georg Fantner



£PFL Failure of brittle )
materials

= A brittle material subjected to uniaxial tension fails without necking, on a plane
normal to the material’s long axis

» Under uniaxial tensile stress, the normal stress that causes it to fail is the
ultimate tensile strength of the material

= |f the material is under three-dimensional stress state, it is useful to determine
the principal stresses at any given point and to use one of the failure criteria
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EPFL Failure of brittle materials

Maximum normal stress criterion

A given structural element fails when
the maximum normal stress in that
o2 component reaches the material’s

This criterion should only be applied

to

B . It implies that the mechanism of
failure is

In the case of plane stress, we can
draw the maximum normal stress
criterion graphically. Any state of
stress within the shaded area is safe




EPFL Yield Criteria for Ductile

what's the
opposite of hard, intractable, stiff,
ductile? unyielding, inflexible, brittle a Subjected to uniaxial
( tension yields and fails t()jy Dage
N and is due primarily to

Ductile materials fail not through fracture,
but

plastic deformation initiated at the yield
= strength takes place through shear
W Thesaurus.plus deformation, it is natural to expect

We therefore cast failure criteria in terms
of yield:
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=PFL  Yon Mises Criterion

= This criterion for failure of ductile materials is derived from strain energy
considerations and states that yielding occurs when:

Jz“ (0, _0'2)2 + (0o, _0'3)2+(0'1 _03)2 :UIZf'

= To make determining the stress state for failure analysis simpler, we can
calculate an equivalent Von Mises stress for each point in the structure.

ou =0y~ 0, +(0,— 03 +(0, 03’

To determine whether a structural component will be safe under a given load, we
should calculate the stress state at all critical points of the component and

particularly at all points where stress concentrations are likely to occur.




=PFL  Safety factor "

= \We can describe how close a material in a structure is to its failure point using
the safety factor.

= The safety factor compares the respective yield strength to the respective
maximum or equivalent stress

= For the Von Mises safety factor we get:

Oy
OM

= sometimes the safety factor is also written as (e for equivalent):
oy
oo

Tle =
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Hen BEAMS ON-. §

EMAIL hpaynad@detrews com

Beams

Loads and supports

Shear in beams

Bending moment in beams
Shear and moment diagrams

Integration method for shear forces
and bending moment

Singularity functions

21
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cPFL  Beams

= Beams are structural members that have one dimension much longer than the
other two

= A beam is a structural element that is capable of withstanding loads primarily
by resisting bending.

= The bending force induced into the material of the beam as a result of the
external loads, own weight, span and external reactions to these loads is
called a bending moment.

= A beam with a laterally and rotationally fixed support at one end with no
support at the other end is called a cantilever beam



=PFL  Beams are fundamental ”
design structures

S4700 150K 12.3men %300 SE(U)
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cPFL  Beams

Internal reactions to external loads

= As with all previous situations, we can calculate the external reaction forces
on beams through the equilibrium equations. For typical beam structures we
get reaction forces and reaction moments at the supports.

= Using the method of sections we can relate the external forces and moments
to internal reactions: internal shear and moments

= We can then calculate the internal shear and moments for each position of the
beam and draw the shear and moment diagrams

= From these diagrams we will then in the next chapter determine how the
beam deforms
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Type Real Support Idealized Support Reactions Provided
el T2 —
4
4 b F
Frrrrrr
Pinor o ey
poerl [A) [——  —
edge e
o’
- I y
“ -
-
Fixed I | p——
7 f

Types of supports

capable of resisting force only
in one specific line of action

restricting force in any direction of the
plane, so that the reaction force has two
components. A pin can not withstand a
moment in the plane

capable of resisting force in
any direction as well as moments or couples

N
o

Georg Fantner




Neutral axis

Compression

Tension

Fixed End

Free End

26

Special beams

A IS
supported on one end with a pin
support, on the other with a roller
support.

A is supported on
one end with a fixed support, and
free on the other end



N
~

=PFL Types of loads

Georg Fantner

the force acts on a
concentrated point (this is a simplification, since

Conend ; E this is not possible in reality)
Tm X

The force per unit area is
constant. In beam problems we often look only in
ey 2D, so then the force per unit length would be
Beam w,
E H‘H (N/m or Ib/f) constant.
Evenly

w
(N, Ib)

distributed
loading

the force per unit area

1 \ f f (length) varies. Often the force per unit length is

given as a force intensity (q(x))
Unevenly R
distributed
loading ; ;

B ME-231B / STRUCTURAL MECHANICS FOR SV
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=PFL Types of problems

= Often, we can replace a distributed load by an equivalent point load acting
through the centroid (center of force) of the distributed load. CAREFULL.: this
is only applicable for certain types or parts of calculations!

= We can separate beam problems again into statically determinate, and
statically indeterminate problems. For the statically indeterminate problems
we will again use constitutive laws and geometric constraints to determine the
redundants



=PrL  Method of Sections ”
Applied to beams

We know from equilibrium:

= the externally applied loads and the support reactions keep the entire body in
equilibrium
= \When making imaginary cuts (sections) internal reactions must exist to keep
the individual sections in equilibrium. The internal reactions can be:
* Axial force (P):
= a horizontal force may be necessary to keep the beam in equilibrium
= we can find axial forces by calculating
= The line of action is always through the centroid of the beams cross-sectional area

Zszo



=PrL  Method of Sections N
Applied to beams

» Shear force (V):
= Aforce parallel to a cut section to balance all vertical forces acting on the section
= We find the shear forces by solvin
y g ZFZ —0

= The two shear forces on two opposing faces of an imaginary cut are equal in
magnitude and opposite in direction

« CONVENTION: positive shear involves downward V on the left-hand side of the cut
and upward on the right.

Shear in a beam is positive if the
segment left of the cutting plane

tends to move upwards relative to
the segment to the right of the cutting
plane




=PrL  Method of Sections N
Applied to beams

« Bending moments: these are internal moments that balance the moments that are
caused by the external loads

= the internal moment is developed within the cross-sectional area of the cut and is
opposite to the resultant external moment

» these moments tend to bend the beam: hence the name bending moment

= the bending moment is positive when the bottom fibers are in tension, and the top
fibers are in compression




€PFL  Sign convention for shear "
and bending moment

Shear and bending moments are resultants of stresses distributed over
the cross section. The are also called: stress resultants

The algebraic sign of a stress resultant is determined by
how it deforms the material on which it acts, NOT by its
direction in space!

VTL, A Cv’) gﬁp
(EYRGED C1—DC.I—D

-------------- N egative Shea
chd df‘cr‘g
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Beam Diagrams

= We can represent the three internal reactions in the beam each in their own
diagram through the length of the beam.
« axial force diagram
 shear force diagram
* bending moment diagram

= The axial force diagram is not used as often as the other two, although it can
be very useful in determining the tensile stresses in flexure elements.



=PL  Beam Diagrams

= Shear Diagrams

= The method of drawing the shear diagram is:

o RN~

Sketch the free body diagram
find the reactions
draw a V-diagram directly under the FBD

find V on “points of interest” by using the method of sections and
solving for F,:

Draw the V diagram and locate point of zero shear
» F.=0
Properties of shear diagrams:

On a section where there is no external load, the shear is constant
At a concentrated load, the shear diagram has a discontinuity

At a uniform distributed load, the shear diagram will be a straight line
with a slope equal to the load density

For simply supported beams with vertical loads, the positive and
negative areas contained by the shear diagram are equal

34



=PL  Moment Diagrams

= Drawing moment diagrams
1. Draw M diagrams directly below shear diagrams
2. calculate the moments at “points of interest”

a) calculate the shear areas between key points. Add all the shear
areas up beginning at the left
b) use the FBD of individual sections beginning on the left side to
compute moments at key points and points of zero shear
3. Plot moment values: sketch shape between the plotted points by
referring to the shear diagram

Properties of moment diagrams
o For simple supported, single span beams, the moment at each end
is zero
o for a cantilever beam acted on by a downward force, the bending

moment is zero at the free end and maximum at the support

o bending moment is positive for simply supported beams and
negative for cantilever beams
o except for cantilever beams, maximum bending moment occurs at

the point of zero shear

35
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+ M

[
z
(y into page)

glx)
vmv

+VA7

+V+dV
— dx —P

+ M +dM

Integration method: Shear
force and bending moment

We derive relationships between

loads, shear forces and bending
moments.

We look at an infinitesimal section of
the beam in bending. Let the section
have length=dx

A distributed force with intensity q(x)
acts downward

w
(=]

Georg Fantner




£PFL  Integration method:
Shear force and bending moment

= From equilibrium in z: q()
« Egn 1: v _ m
g dr q(z) v v
M + M +dM

= From equilibrium of moments: " C )
= Eqn 2: IM (yzinto page) \4

R — V +V+dV

dx «— dx —»
= Combined we get:
= Eqgn 3:

d>M

= —q()
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Integration method:
Shear force and bending moment

= From integrating egqn 1 we get: vy = /dV = /—q(x)da:+01
q=const V =—q-x+C
This means:

= Shear is the sum of all vertical forces acting on the beam starting on the left
end, up to the point of section, + the shear at the left end of the beam C;

= Between two sections, the shear changes by the amount of vertical forces
= |f a concentrated force occurs, there is a discontinuity
= for constant loads: the slope of the shear is the load density q

38



=PrL

Integration method:

Shear force and bending moment
= From integrating eqn 2 we get: V= /dM _ /V(@dx Lo,
This means:

= the bending moment between two sections is the area under the V curve
between the two sections

= C, we get from the boundary conditions:
* |f the beam is on rollers or pins, C,=0
« If the beam is on a fixed support, we can calculate the moment from the reactions

39



£PFL  Integration method: X
Shear force and bending moment

= Circle to determine curvature of V and M diagram (going from q to V, or from V

o
S

PD: Positive-decreasing
ND: Negative-decreasing
NI: Negative-increasing
Pl: Positive-Increasing
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Singularity functions

To calculate the deflections, moments and

shear diagrams of complex loading

scenarios, we need a way to combine the
<x — a>n — loads into one concise formula.

Singularity functions give us a way of adding
common loading types that start acting at
different distances along the beam.

n is a positive or negative integer including
0. a is the boundary value where the load
begins.

A special case of the singularity function is
for n=-1. This is the Dirac delta function and
can be used to represent point loads.




=P7L Singularity functions

Standard functions n=0,1,2

n=0

0 1 ifx >z
(x —xg) = )
0 ifx<uxg

<x - a>Y
A

n=1

0 if £ < xg

1 r—a if x>z
(x —xg) =

<X —-a>

1

n=2
(& — 20)? = (x —a)? ifz>mx
o 0 if £ < xg
<X - ax*
>
0 a x
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Standard loading
schemes

Georg Fantner
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Integration of
Singularity functions

= The exponent in the singularity functions can NOT be treated as a normal
exponent. It is actually an index!

1
for n >0 /(w —a)'dx = (x —a)"*!

n—+1

for n <0 /(m —a)"dx = (x — a)" !

= Using the integration of the singularity functions we can now calculate the
effects that standard loads q(x) have on V and M

a4



=PFL  Singularity function
description of loads

Jo
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